Noise Prevents Infinite Stretching of the Passive Field in a Stochastic Vector Advection Equation
نویسندگان
چکیده
منابع مشابه
Stochastic Heat Equation with Infinite Dimensional Fractional Noise: L2-theory
In this article we consider the stochastic heat equation in [0, T ]× Rd, driven by a sequence (β)k of i.i.d. fractional Brownian motions of index H > 1/2 and random multiplication functions (g)k. The stochastic integrals are of Hitsuda-Skorohod type and the solution is interpreted in the weak sense. Using Malliavin calculus techniques, we prove the existence and uniqueness of the solution in a ...
متن کاملSpectral Polynomial Chaos Solutions of the Stochastic Advection Equation
We present a new algorithm based on Wiener-Hermite functionals combined with Fourier collocation to solve the advection equation with stochastic transport velocity. We develop different stategies of representing the stochastic input, and demonstrate that this approach is orders of magnitude more efficient than Monte Carlo simulations for comparable accuracy.
متن کاملa swot analysis of the english program of a bilingual school in iran
با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...
15 صفحه اولStochastic Solutions for the Two-Dimensional Advection-Diffusion Equation
In this paper, we solve the two-dimensional advection-diffusion equation with random transport velocity. The generalized polynomial chaos expansion is employed to discretize the equation in random space while the spectral/hp element method is used for spatial discretization. Numerical results which demonstrate the convergence of generalized polynomial chaos are presented. Specifically, it appea...
متن کاملLp-Theory for the Stochastic Heat Equation with Infinite-Dimensional Fractional Noise
In this article, we consider the stochastic heat equation du = (∆u + f(t, x))dt + P∞ k=1 g(t, x)δβ t , t ∈ [0, T ], with random coefficients f and g, driven by a sequence (βk)k of i.i.d. fractional Brownian motions of index H > 1/2. Using the Malliavin calculus techniques and a p-th moment maximal inequality for the infinite sum of Skorohod integrals with respect to (βk)k, we prove that the equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Fluid Mechanics
سال: 2014
ISSN: 1422-6928,1422-6952
DOI: 10.1007/s00021-014-0187-0